ArtiFacts: Jean Louis Petit's Screw Tourniquet
نویسندگان
چکیده
منابع مشابه
A Principal Exposition of Jean-Louis Le Moigne’s Systemic Theory
The aim of this article is to present to the reader the theoretical construction of Jean-Louis Le Moigne. It starts with a discussion of the background that is relevant for this construction, which is: a few words about Le Moigne himself, some influences on his thinking and an overview of the theoretical framework together with some domains of application. The following exposition of Le Moigne’...
متن کاملJean-Louis Brachet (1789-1858). A forgotten contributor to early 19th century neurology.
Specialists of the history of hysteria know the name of Jean-Louis Brachet (1789-1858), but few realise the influence of this physician and surgeon from Lyon, a city in the southeastern part of France. Not only a clinician, he was also a neurophysiology researcher in the early 19th century. Along with his descriptions of meningoencephalitis, including hydrocephalus and meningoencephalitis, he e...
متن کاملSUR LES TYPES D'HOMOTOPIE MODÉLISÉS PAR LES ∞-GROUPOÏDES STRICTS À la mémoire de Jean-Louis Loday
Résumé. L'objet de ce texte est l'étude de la classe des types d'homotopie qui sont modélisés par les ∞-groupoïdes stricts. Nous démontrons que la catégorie homotopique des ∞-groupoïdes stricts simplement connexes est équivalente à la catégorie dérivée en degré homologique d ≥ 2 des groupes abéliens. Nous en déduisons que les types d'homotopie simplement connexes modélisés par les ∞-groupoïdes ...
متن کاملBaron Jean-Louis Alibert (1768-1837) and the first description of mycosis fungoides.
The term mycosis fungoides was first used by the French dermatologist Baron Jean-Louis Alibert (1768-1837). He suggested that name because the skin lesions had mushroom-like appearance. Working ceaseless with both patients and collaborators, Alibert brought fame to the Parisian Saint-Louis Hospital as a worldwide training center of dermatology, founding thus the French School of Dermatology.
متن کاملAlgebraic Families of Nonzero Elements of Shafarevich-tate Groups Jean-louis Colliot-thélène and Bjorn Poonen
The purpose of this note is to show that there exist non-trivial families of algebraic varieties for which all the fibers above rational points (or even above points of odd degree) are torsors of abelian varieties representing nonzero elements of their Shafarevich-Tate groups. More precisely, we will prove the following theorem. (Throughout this paper, P unadorned denotes PQ.) Theorem 1. There ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Clinical Orthopaedics & Related Research
سال: 2016
ISSN: 0009-921X
DOI: 10.1007/s11999-016-5042-6